Effect of organic compounds on nanoparticle formation in diluted diesel exhaust
نویسندگان
چکیده
The nucleation of nanoparticles in the exhaust of a modern light-duty diesel vehicle was investigated on a chassis dynamometer. This laboratory study is focused on the influence of volatile organic compounds (VOCs) on nucleation of volatile nanoparticles. Different organic compounds were added to the dilution air of the particle sampling under different sampling conditions. Sample temperature and relative sample humidity were varied in a wide range. The number size distribution of the particles was measured with a scanning mobility particle sizer (SMPS) and showed significant differences in response to the added organic compounds. While the nucleation mode particles showed a large variation in concentration, the accumulation mode particles remained unchanged for all compounds. Depending on the functional group, organic compounds were capable of initiating and increasing (alcohols and toluene) or decreasing (acetone, aniline, and methyl tert-butyl ether (MTBE)) nucleation mode particles. Short volatile aliphatic hydrocarbons (hexane and cyclohexane) turned out to be without effect on nucleation of nanoparticles. Possible reasons for the differences are discussed.
منابع مشابه
Effect of organic compounds on nanoparticle formation
Effect of organic compounds on nanoparticle formation in diluted diesel exhaust U. Mathis, M. Mohr, and R. Zenobi EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Internal Combustion Engines and Furnaces, CH-8600 Dübendorf, Switzerland ETH Hönggerberg, Swiss Federal Institute of Technology, Chemistry Department, CH-8093 Zürich, Switzerland Received: 6 November...
متن کاملChemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.
Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel ve...
متن کاملNanoparticle formation in the exhaust of vehicles running on ultra-low sulfur fuel
Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract Introduction Conclusions References Tables Figures ◭ ◮ ◭ ◮ Back Close Full Screen / Esc Abstract The concern of adverse health impacts from exposure to vehicle-emitted nanoparticles has been escalating over the past few years. In order to meet more stringent EPA emission standards for particle mass ...
متن کاملOrganic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber.
Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary emissions after several hours of processing at atmospherically relevant hydroxyl radical concentrations. Less than 10% of the SOA mass can be explaine...
متن کاملModeling semivolatile organic aerosol mass emissions from combustion systems.
Experimental measurements of gas-particle partitioning and organic aerosol mass in diluted diesel and wood combustion exhaust are interpreted using a two-component absorptive-partitioning model. The model parameters are determined by fitting the experimental data. The changes in partitioning with dilution of both wood smoke and diesel exhaust can be described by two lumped compounds in roughly ...
متن کامل